Hamiltonian Mechanics
6 Conclusion
Many topics remained outside from these lecture notes, differently from the original planning. These include a treatment of Poisson and Jacobi manifolds, a detailed analysis of phase-space reduction, a discussion of geodesic motions on sub-riemannian geometry, the introduction of contact geometry – the odd sister of symplectic geometry – and its use for thermodynamics and dissipative systems, Lax pairs and the modern theory of integrable systems, monodromy, rigid bodies from the lagrangian and hamiltonian point of view and, last but not least, semiclassical analysis and quantization.
The topic is vast, interesting and very actively developed. I hope the selection made for this course has challenged you, that it will help you in the rest of your career and that it did show in a new light some of the remarkable and beautiful aspects of classical mechanics.
Bibliography
-
[AKN06] Vladimir I. Arnold, Valery V. Kozlov, and Anatoly I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics. 3rd edition. Vol. 3. Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, Heidelberg, 2006. doi: 10.1007/978-3-540-48926-9.
-
[AMR88] Ralph Abraham, Jerrold E. Marsden, and Tudor Ratiu. Manifolds, Tensor Analysis, and Applications. Springer New York, 1988. doi: 10.1007/978-1-4612-1029-0. url: https://doi.org/10.1007%2F978-1-4612-1029-0.
-
[Arn10] Vladimir Igorevich Arnold. Stability and Chaos in Celestial Mechanics. Springer-Verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-540-85146-2.
-
[Arn89] Vladimir I. Arnold. Mathematical methods of classical mechanics. 2nd edition. Vol. 60. Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.
-
[BGG85] Giancarlo Benettin, Luigi Galgani, and Antonio Giorgilli. “A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems”. In: Celestial Mechanics 37.1 (1985), pp. 1–25. issn: 00088174. doi: 10.1007/BF01230338.
-
[BKF95] A V Bolsinov, V V Kozlov, and A T Fomenko. “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”. In: Russian Mathematical Surveys 50.3 (1995), pp. 473–501. doi: 10.1070/rm1995v050n03abeh002100. url: https://doi.org/10.1070%2Frm1995v050n03abeh002100.
-
[Bro04] Henk W. Broer. “KAM theory: The legacy of Kolmogorov’s 1954 paper”. In: Bulletin of the American Mathematical Society 41.04 (2004), pp. 507–522. issn: 0273-0979. doi: 10.1090/S0273-0979-04-01009-2. url: http://www.ams.org/journal-getitem?pii=S0273-0979-04-01009-2.
-
[Bro09] Henk W. Broer. “Normal Forms in Perturbation Theory”. In: Encyclopedia of Complexity and Systems Science. Springer New York, 2009, pp. 6310–6329. doi: 10.1007/978-0-387-30440-3_372. url: http://www.math.rug.nl/\~{}broer/pdf/nfpt.pdf.
-
[Bro16] H.W. Broer. Near the horizon: an invitation to geometric optics. Ed. by MAA. Vol. 33. The Carus Mathematical Monographs. 2016.
-
[BW05] John C. Baez and Derek K. Wise. Lectures on Classical Dynamics. Unpublished lecture notes. 2005. url: http://www.math.ucr.edu/home/baez/classical/texfiles/2005/book/classical_20180116.pdf.
-
[Cel09] Alessandra Celletti. “Perturbation TheoryPerturbation theory in Celestial MechanicsCelestial mechanics”. In: Encyclopedia of Complexity and Systems Science. Springer New York, 2009, pp. 6673–6686. doi: 10.1007/978-0-387-30440-3_397. url: https://doi.org/10.1007%2F978-0-387-30440-3_397.
-
[Dub10] Boris Dubrovin. Appunti sulla MECCANICA ANALITICA. Unpublished lecture notes (in Italian). 2010. url: https://archive.org/details/Boris_DUBROVIN___Meccanica_Analitica.
-
[Eur24] European Mathematical Society. “Elliptic Integral”. In: Encyclopedia of Mathematics. EMS Press, 2024. url: http://encyclopediaofmath.org/index.php?title=Elliptic_integral&oldid=46813.
-
[GF00] I.M. Gelfand and S.V. Fomin. Calculus of Variations. Dover Books on Mathematics. Dover Publications, New York, 2000. isbn: 9780486414485.
-
[GPS13] H. Goldstein, C.P. Poole, and J. Safko. Classical Mechanics. Pearson, 2013. isbn: 9781292026558.
-
[Guz15] M. Guzzo. “The Nekhoroshev theorem and long-term stabilities in the solar system”. In: Serbian Astronomical Journal 1.190 (2015), pp. 1–10. issn: 1450698X. doi: 10.2298/SAJ1590001G.
-
[J.M13] Lee J.M. Introduction to Smooth Manifolds. Vol. 218. Graduate Texts in Mathematics. Springer, New York, 2013. doi: 10.1007/978-1-4419-9982-5.
-
[Kna18] Andreas Knauf. Mathematical physics: classical mechanics. Vol. 109. UNITEXT. Springer, New York, 2018. doi: 10.1007/978-3-662-55774-7.
-
[Lan+76] L.D. Landau et al. Mechanics: Volume 1. Butterworth-Heinemann. Elsevier Science, 1976. isbn: 9780750628969.
-
[Lap51] Pierre Simon Laplace. A Philosophical Essay on Probabilities. Ed. by New York Dover Publications. translated into English from the original French 6th ed. by Truscott, F.W. and Emory, F.L. 1951.
-
[LL76] L.D. Landau and E.M. Lifshitz. Mechanics: Volume 1. Butterworth-Heinemann. Elsevier Science, 1976. isbn: 9780750628969.
-
[Low12] John H. Lowenstein. Essentials of Hamiltonian Dynamics. Cambridge University Press, 2012. doi: 10.1017/CBO9780511793721.
-
[MR11] Jaume Masoliver and Ana Ros. “Integrability and chaos: the classical uncertainty.” English. In: Eur. J. Phys. 32.2 (2011), pp. 431–458. issn: 0143-0807. url: https://www-e.ovgu.de/mertens/teaching/seminar/themen/ejp_integrability_chaos.pdf.
-
[MR99] Jerold E. Marsden and Tudor S. Ratiu. Introduction to Mechanics and Symmetry. 2nd. Vol. 17. Texts in Applied Mathematics. Springer, New York, 1999. doi: 10.1007/978-0-387-21792-5.
-
[P0̈1] Jürgen Pöschel. “A lecture on the classical KAM theorem.” In: Smooth ergodic theory and its applications. Proceedings of the AMS summer research institute, Seattle, WA, USA, July 26–August 13, 1999. Providence, RI: American Mathematical Society (AMS), 2001, pp. 707–732. isbn: 0-8218-2682-4/hbk. doi: 10.1090/pspum/069. url: http://www.poschel.de/pbl/kam-1.pdf.
-
[P9̈3] Jürgen Pöschel. “Nekhoroshev estimates for quasi-convex hamiltonian systems”. In: Mathematische Zeitschrift 213.1 (1993), pp. 187–216. issn: 0025-5874. doi: 10.1007/BF03025718. url: http://link.springer.com/10.1007/BF03025718.
-
[Sch19] J. Schwichtenberg. No-Nonsense Classical Mechanics: A Student-Friendly Introduction. No-Nonsense Books, 2019. url: https://nononsensebooks.com/cm/.
-
[Ser20] Marcello Seri. Analysis on Manifolds. Unpublished lecture notes, version 0.10. 2020. url: https://github.com/mseri/AoM/releases.
-
[Sil08] Ana Cannas da Silva. Lectures on Symplectic Geometry. Ed. by Heidelberg Springer-Verlag Berlin. Vol. 1764. Lecture Notes in Mathematics. 2008. doi: 10.1007/978-3-540-45330-7. url: https://people.math.ethz.ch/~acannas/Papers/lsg.pdf.
-
[SW15] Gerald J. Sussman and Jack Wisdom. Structure and Interpretation of Classical Mechanics. Ed. by MIT Press. 2015. url: https://mitpress.mit.edu/books/structure-and-interpretation-classical-mechanics-second-edition.
-
[Ton05] David Tong. Classical Dynamics. Unbpublished lecture notes. 2005. url: http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf.
Index
A
acceleration, section 1.1
action, section 1.2
action
critical point, section 1.2
B
Banach space, section 1.2
C
configuration, section 1.1.1
space, section 1.1.1
D
degrees of freedom, section 1.1.1
diffemorphic, example 1.3
E
elliptic integrals, example 1.1
equations of motion, section 1.1.1
Euler-Lagrange equations, theorem 1.1
F
frames of reference, section 1.1
Frechet
derivative, section 1.2
differentiable, section 1.2
G
generalized
coordinates, section 1.1.1
velocities, section 1.1.1
gravitational constant, example 1.2
H
Hamilton’s principle, section 1.2
I
inertia, section 1.1
L
lagrangian, section 1.2
N
Newton
principle of determinacy, section 1.1.1
second law, section 1.1
universal gravitation, example 1.2
P
pendulum, example 1.1
ideal, example 1.1
point particle, section 1.1
system, section 1.1.1
position, section 1.1
principle of least action, section 1.2
S
spring, example 1.1
constant, example 1.1
Hooke’s law, example 1.1
state space, section 1.1.1
V
variation, item 5
velocity, section 1.1